skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chattopadhyay, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explicitly construct an extractor for two independent sources on n bits, each with min-entropy at least log^C n for a large enough constant C. Our extractor outputs one bit and has error n^{-\Omega(1)}. The best previous extractor, by Bourgain, required each source to have min-entropy .499n. A key ingredient in our construction is an explicit construction of a monotone, almost-balanced boolean function on n bits that is resilient to coalitions of size n^{1-delta}, for any delta>0. In fact, our construction is stronger in that it gives an explicit extractor for a generalization of non-oblivious bit-fixing sources on n bits, where some unknown n-q bits are chosen almost polylog(n)-wise independently, and the remaining q=n^{1-\delta} bits are chosen by an adversary as an arbitrary function of the n-q bits. The best previous construction, by Viola, achieved q=n^{1/2 - \delta}. Our explicit two-source extractor directly implies an explicit construction of a 2^{(log log N)^{O(1)}}-Ramsey graph over N vertices, improving bounds obtained by Barak et al. and matching independent work by Cohen. 
    more » « less